%I #15 Oct 01 2022 14:17:35
%S 2,7,5,6,1,1,3,4,8,2,6,9,3,3,1,7,3,4,8,9,3,1,2,2,8,0,0,5,9,6,4,5,6,8,
%T 4,6,2,4,2,0,0,2,5,6,5,0,3,0,0,8,9,8,4,6,1,7,0,1,7,3,6,7,2,0,3,3,8,3,
%U 4,6,2,1,4,8,8,5,8,4,0,5,3,6,6,7,2,5,9,5,6,4,7,3,4,2,4,7,8,7,7,2,7,1,3,7,8
%N Decimal expansion of (4/45)*Pi^3.
%C The constant plays a role in the flatness problem.
%H Alan H. Guth, <a href="http://journals.aps.org/prd/pdf/10.1103/PhysRevD.23.347">Inflationary universe: A possible solution to the horizon and flatness problems</a>, Physical Review D 23 (2), pp. 347-356.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Flatness_problem">Flatness problem</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 2.756113482693317348931228005964568462420025650300898461701736720338346...
%t RealDigits[N[4/45*Pi^3, 105]][[1]]
%o (Magma) n:=4/45*Pi(RealField(105))^3; Reverse(Intseq(Floor(10^104*n)));
%o (PARI) default(realprecision, 105); x=4/45*Pi^3; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));
%Y Cf. A236258, A248224.
%K nonn,cons,easy
%O 1,1
%A _Arkadiusz Wesolowski_, Oct 04 2014