Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Aug 04 2015 01:11:16
%S 203434,214490,225070,258014,294594,313054,315722,352886,389390,
%T 409354,418846,421630,452354,464386,478906,485134,500906,508046,
%U 508990,526030,528410,538746,542270,542794,548302,556870,559690,569066,571234,579886,582406,588730
%N Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.
%C A subsequence of A066509 and offset by one from A176167.
%H Anders Hellström, <a href="/A248203/b248203.txt">Table of n, a(n) for n = 1..300</a>
%F a(n) = A176167(n)+1.
%e 203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by _James G. Merickel_, Jul 23 2015]
%t f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* _Vincenzo Librandi_, Aug 02 2015 *)
%o (PARI)
%o {
%o \\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\
%o \\ program is to run from a different starting value of n, it must not \\
%o \\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\
%o \\ to 2 modulo 4), and either u or the vector s needs to be brought into \\
%o \\ agreement. \\
%o n=203434;s=[4,4,8,8,8,4];u=1;
%o while(1,
%o if(issquarefree(n) &&
%o issquarefree(n-1) &&
%o issquarefree(n+1) &&
%o omega(n)==4 &&
%o omega(n-1)==4 &&
%o omega(n+1)==4,
%o print1(n, ", "));
%o n+=s[u];if(u==6,u=1,u++))
%o } \\ _James G. Merickel_, Jul 23 2015
%o (PARI) is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1));
%o first(m)=my(v=vector(m),i,t=2);for(i=1,m,while(!is_ok(t),t++);v[i]=t;t++);v; /* _Anders Hellström_, Aug 01 2015 */
%Y Cf. A066509, A176167, A248201, A248202, A248204, A259349, A259350, A259801.
%K nonn
%O 1,1
%A _James G. Merickel_, Oct 28 2014