login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A248186(k+1) = A248186(k) + 1.
3

%I #5 Oct 06 2014 23:01:08

%S 4,5,7,8,10,11,12,14,15,17,18,20,21,23,24,25,27,28,30,31,33,34,36,37,

%T 38,40,41,43,44,46,47,49,50,51,53,54,56,57,59,60,62,63,64,66,67,69,70,

%U 72,73,74,76,77,79,80,82,83,85,86,87,89,90,92,93,95,96,98

%N Numbers k such that A248186(k+1) = A248186(k) + 1.

%C a(n) = A059539(n+2) = [3^(1/3)*(n+2)] for n = 1..655, but a(656) = 948 = A059539(658)-1.

%H Clark Kimberling, <a href="/A248188/b248188.txt">Table of n, a(n) for n = 1..1000</a>

%e The difference sequence of A248186 is (0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, ...), so that A248187 = (1, 2, 3, 6, 9, 13, 16, 19, 22,...) and A248188 = (4, 5, 7, 8, 10, 11, 12, 14, 15, 17,...), the complement of A248186.

%t $MaxExtraPrecision = Infinity;

%t z = 800; p[k_] := p[k] = Sum[1/(h*(h + 1)*(h + 2)*(h + 3)), {h, 1, k}];

%t N[Table[1/18 - p[n], {n, 1, z/10}]]

%t f[n_] := f[n] = Select[Range[z], 1/18 - p[#] < 1/n^3 &, 1]

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A248186 *)

%t Flatten[Position[Differences[u], 0]] (* A248187 *)

%t Flatten[Position[Differences[u], 1]] (* A248188 *)

%Y Cf. A248186, A248187, A248183.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Oct 04 2014