login
Decimal expansion of Sum_{h >= 0} 1/binomial(h, floor(h/2)).
3

%I #17 Jul 01 2024 05:22:24

%S 3,2,0,9,1,9,9,5,7,6,1,5,6,1,4,5,2,3,3,7,2,9,3,8,5,5,0,5,0,9,4,7,7,0,

%T 4,8,8,1,8,9,3,7,7,4,9,8,7,2,8,4,9,3,7,1,7,0,4,6,5,8,9,9,5,6,9,2,5,4,

%U 1,5,4,5,4,0,8,4,2,3,5,9,2,2,4,5,6,0

%N Decimal expansion of Sum_{h >= 0} 1/binomial(h, floor(h/2)).

%C Is this 2 + A248897? [_Bruno Berselli_, Mar 06 2015]. Yes, see Mathematica program below. - _Vaclav Kotesovec_, Jul 01 2024

%H Clark Kimberling, <a href="/A248181/b248181.txt">Table of n, a(n) for n = 0..1000</a>

%F Equals 2 + 2*Pi/3^(3/2). - _Vaclav Kotesovec_, Jul 01 2024

%e 3.20919957615614523372938550509477048818...

%e Equals 1 + 1 + 1/2 + 1/3 + 1/6 + 1/10 + 1/20 + 1/35 + 1/70 + 1/126 + ...

%t r = N[Sum[1/Binomial[h, Floor[h/2]], {h, 0, 2000}], 200];

%t u = RealDigits[N[r, 200]][[1]]

%t (* or *)

%t Sum[1/Binomial[h, h/2], {h, 0, Infinity, 2}] + Sum[1/Binomial[h, (h-1)/2], {h, 1, Infinity, 2}] // Simplify // Expand (* _Vaclav Kotesovec_, Jul 01 2024 *)

%Y Cf. A248182.

%K nonn,easy,cons

%O 0,1

%A _Clark Kimberling_, Oct 04 2014