login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes equal to 3 or congruent to 2 mod 3 that satisfy (1+a^p) == (1+a)^p (mod p^2) for all a between (p-3)/2.
0

%I #7 Sep 26 2018 11:26:59

%S 3,5,11,17,23,29,41,47,53,71,89,101,107,113,131,137,149,167,173,191,

%T 197,233,239,251,257,263,269,281,293,311,317,347,353,359,383,389,401,

%U 431,449,461,467,479,491,503,509,521,557,563,569,587,593,599,617,641,647

%N Primes equal to 3 or congruent to 2 mod 3 that satisfy (1+a^p) == (1+a)^p (mod p^2) for all a between (p-3)/2.

%C Apart from 3, subsequence of A003627.

%C Gives an easily testable condition which allows occasionally to prove the first case of Fermat’s Last Theorem over number fields for a prime number p == 2 mod 3.

%H Alain Kraus, <a href="http://arxiv.org/abs/1410.0546">Remarques sur le premier cas du théorème de Fermat sur les corps de nombres</a>, arXiv:1410.0546 [math.NT], 2014, abstract in English.

%t selQ[p_] := p == 3 || Mod[p, 3] == 2 && AllTrue[Range[(p-3)/2], Mod[1+#^p, p^2] != Mod[(1+#)^p, p^2]&];

%t Select[Prime[Range[2, 120]], selQ] (* _Jean-François Alcover_, Sep 26 2018 *)

%o (PARI) isok(p) = {if ((p==3) || (p % 3) == 2, for (a=1, (p-3)/2, if (Mod(1+a^p, p^2) == Mod((1+a)^p, p^2), return (0));); return (1);); return (0);}

%o lista(nn) = forprime(p=3, nn, if (isok(p), print1(p, ", ")));

%Y Cf. A003627.

%K nonn

%O 1,1

%A _Michel Marcus_, Oct 03 2014