login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positions of 1,0,1 in the Thue-Morse sequence (A010060).
2

%I #5 Oct 02 2014 22:36:07

%S 3,12,15,20,27,36,43,48,51,60,63,68,75,80,83,92,99,108,111,116,123,

%T 132,139,144,147,156,163,172,175,180,187,192,195,204,207,212,219,228,

%U 235,240,243,252,255,260,267,272,275,284,291,300,303,308,315,320,323

%N Positions of 1,0,1 in the Thue-Morse sequence (A010060).

%C Every positive integer lies in exactly one of these six sequences:

%C A248056 (positions of 0,0,1)

%C A248104 (positions of 0,1,0)

%C A157970 (positions of 1,0,0)

%C A157971 (positions of 0,1,1)

%C A248105 (positions of 1,0,1)

%C A248057 (positions of 1,1,0)

%H Clark Kimberling, <a href="/A248105/b248105.txt">Table of n, a(n) for n = 1..1000</a>

%e Thue-Morse sequence: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,..., so that a(1) = 3 and a(2) = 12.

%t z = 600; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 13]; v = Rest[u]; w = Rest[v]; t1 = Table[If[u[[n]] == 0 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}];

%t t2 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}];

%t t3 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 0, 1, 0], {n, 1, z}];

%t t4 = Table[If[u[[n]] == 0 && v[[n]] == 1 && w[[n]] == 1, 1, 0], {n, 1, z}];

%t t5 = Table[If[u[[n]] == 1 && v[[n]] == 0 && w[[n]] == 1, 1, 0], {n, 1, z}];

%t t6 = Table[If[u[[n]] == 1 && v[[n]] == 1 && w[[n]] == 0, 1, 0], {n, 1, z}];

%t Flatten[Position[t1, 1]] (* A248056 *)

%t Flatten[Position[t2, 1]] (* A248104 *)

%t Flatten[Position[t3, 1]] (* A157970 *)

%t Flatten[Position[t4, 1]] (* A157971 *)

%t Flatten[Position[t5, 1]] (* A248105 *)

%t Flatten[Position[t6, 1]] (* A248057 *)

%Y Cf. A010060, A248056, A157970, A157971, A248104, A248057.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Oct 01 2014