login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: TR(m,n) is the Wiener index of the hexagonal trapezium T(m,n), defined in the He et al. reference (1 <= n <= m).
0

%I #17 Nov 11 2024 01:57:05

%S 27,109,210,279,566,822,569,1182,1816,2328,1011,2130,3370,4540,5433,

%T 1637,3482,5612,7772,9707,11130,2479,5310,8670,12224,15653,18622,

%U 20748,3569,7686,12672,18096,23559,28662,32974,36000,4939,10682,17746,25588

%N Triangle read by rows: TR(m,n) is the Wiener index of the hexagonal trapezium T(m,n), defined in the He et al. reference (1 <= n <= m).

%C m denotes the number of hexagons in the bottom row, while n is the number of rows of hexagons.

%C TR(m,1) = A143938(m) = Wiener index of a linear chain of m hexagons.

%C TR(n,n) = A033544(n) = Wiener index of an n-hexagonal triangle.

%H Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match72/n3/match72n3_835-843.pdf">Hosoya polynomials of hexagonal triangles and trapeziums</a>, MATCH, Commun. Math. Comput. Chem. 72, 2014, 835-843.

%F TR(m,n) = (4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + (n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4))/30; see Corollary 3,7 in the He et al. reference.

%F The reader can get the lengthy expression of the bivariate g.f. G by activating the Maple program for TR(m,n) and then activating the Maple program for G.

%e Row 1 is 27; indeed T(1,1) is just one hexagon ABCDEF; it has 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF); 6*1 + 6*2 + 3*3 = 27.

%e Triangle starts:

%e 27;

%e 109, 210;

%e 279, 566, 822;

%e 569, 1182, 1816, 2328;

%p TR := proc (m, n) options operator, arrow: (4/3)*m^3*(n+1)^2+(2/3)*m^2*(3+11*n+6*n^2-2*n^3)+(1/30)*n*(28+45*n-35*n^2-8*n^4)+(2/3)*m*(1+9*n+6*n^2-4*n^3+n^4) end proc: for m to 10 do seq(TR(m, n), n = 1 .. m) end do; # yields sequence in triangular form

%p G := factor(sum(sum(TR(i, j)*z^i*t^j, j = 1 .. i), i = 1 .. infinity));

%o (Magma) /* As triangle */ [[(4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + ((n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4)) / 30): n in [1..m]]: m in [1.. 15]]; // _Vincenzo Librandi_, Nov 16 2014

%Y Cf. A143938, A033544.

%K nonn,tabl

%O 1,1

%A _Emeric Deutsch_, Nov 15 2014