Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 12 2022 07:56:34
%S 2,8,14,22,26,32,38,42,50,56,62,70,74,82,88,94,98,104,110,118,122,128,
%T 134,138,146,152,158,162,168,174,182,186,194,200,206,214,218,224,230,
%U 234,242,248,254,262,266,274,280,286,290,296,302,310,314,322,328
%N Positions of 1,1 in the Thue-Morse sequence (A010060).
%C Every positive integer lies in exactly one of these four sequences: A248056, A091855, A091855, A248057.
%H Clark Kimberling, <a href="/A248057/b248057.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = 2*A091855(n) for n >= 1.
%e Thue-Morse sequence: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,..., so that a(1) = 2 and a(2) = 8.
%t z = 400; u = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 9] (* A010060 *)
%t v = Rest[u]
%t t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];
%t t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];
%t t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];
%t t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];
%t Flatten[Position[t1, 1]] (* A248056 *)
%t Flatten[Position[t2, 1]] (* A091855 *)
%t Flatten[Position[t3, 1]] (* A091785 *)
%t Flatten[Position[t4, 1]] (* A248057 *)
%t SequencePosition[ThueMorse[Range[400]],{1,1}][[All,2]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 16 2017 *)
%o (PARI) t(n)=hammingweight(n)%2;
%o for(n=1,500,if(t(n)==1&&t(n-1)==1,print1(n,", "))); \\ _Joerg Arndt_, Mar 12 2022
%Y Cf. A010060, A091855, A091785, A248056.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Sep 30 2014