login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=88; for n>=1, a(n+1) is the smallest palindromic 4-almost prime with a(n) as a central substring.
1

%I #28 Dec 02 2014 20:58:09

%S 88,1881,218812,12188121,1121881211,111218812111,51112188121115,

%T 1511121881211151,815111218812111518,78151112188121115187,

%U 1781511121881211151871,917815111218812111518719,59178151112188121115187195,9591781511121881211151871959

%N a(1)=88; for n>=1, a(n+1) is the smallest palindromic 4-almost prime with a(n) as a central substring.

%C The 4-almost primes are the numbers that are the product of exactly four (not necessarily distinct) primes.

%e a(1)=88=2*2*2*11;

%e a(2)=1881=3*3*11*19;

%e a(3)=218812=2*2*11*4973.

%t d[n_]:=IntegerDigits[n]; t = {x = 88}; Do[i = 1; While[!PrimeOmega[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]]==4, i++]; AppendTo[t, x = y], {n, 14}]; t

%Y Cf. A014613, A247483, A247484.

%K nonn,base

%O 1,1

%A _Michel Lagneau_, Dec 01 2014