login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} |Stirling1(n, k)|*(n-k)! for n>=0.
0

%I #11 Jan 22 2018 03:20:27

%S 1,1,2,8,65,957,22512,773838,36561289,2271696241,179538792358,

%T 17584290721868,2090031277816649,296326507395472205,

%U 49400463740287289892,9566059122999739401954,2129221864475839211318769,539805407803681202368358785,154636541536285163968515043306,49702496963149041682740769491568

%N a(n) = Sum_{k=0..n} |Stirling1(n, k)|*(n-k)! for n>=0.

%C Compare to A007840(n) = Sum_{k=0..n} |Stirling1(n, k)|*k!, which equals the number of factorizations of permutations of n letters into ordered cycles.

%C For n > 1, a(n) is equal to the permanent of the (n-1) X (n-1) matrix in which the (i, j)-entry is equal to delta(i, j) + i, letting delta denote the Kronecker delta function, as illustrated in the below example. - _John M. Campbell_, Jan 21 2018

%F a(n) ~ ((n-1)!)^2. - _Vaclav Kotesovec_, Sep 30 2014

%e For example, the (5-1) X (5-1) matrix of the form indicated above is equal to

%e [2 1 1 1]

%e [2 3 2 2]

%e [3 3 4 3]

%e [4 4 4 5]

%e and the permanent of the above matrix is equal to 957 = a(5). - _John M. Campbell_, Jan 21 2018

%t Table[Sum[Abs[StirlingS1[n,k]]*(n-k)!,{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 30 2014 *)

%o (PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))}

%o {a(n)=sum(k=0, n, (-1)^(n-k)*Stirling1(n, k)*(n-k)!)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A008275 (Stirling1 numbers).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 29 2014