OFFSET
3,1
COMMENTS
Conjecture: For any n > 2, a(n) exists and a(n) <= n.
The conjecture is true: One can show that 2*n divides phi(n^2) for all n > 2. So, a(n) is at most n. - Derek Orr, Sep 29 2014
a(n) >= 3 for all n. - Robert Israel, Sep 29 2014
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 3..10000
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(5) = 3 since 3 + 5 divides phi(3*5) = 8.
MAPLE
f:= proc(n)
local m;
for m from 3 do
if numtheory:-phi(m*n) mod (m+n) = 0 then return m fi
od
end proc;
seq(f(n), n=3..100); # Robert Israel, Sep 29 2014
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[EulerPhi[m*n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 3, 70}]
PROG
(PARI)
a(n)=m=1; while(eulerphi(m*n)%(m+n), m++); m
vector(100, n, a(n+2)) \\ Derek Orr, Sep 29 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 29 2014
STATUS
approved