OFFSET
1,1
COMMENTS
Table starts
.32....396....2292......9080......28020.......72972.......167576........349392
.32....702....5316.....27800.....104620......329742.......884032.......2131356
.32...1264...12612.....86736.....397988.....1514488......4733944......13169096
.32...2314...30404....274204....1530604.....7023686.....25559480......81945184
.32...4308...74132....874884....5921416....32751572....138568024.....511733540
.32...8150..182084...2808970...22963328...153115250....752268668....3199929582
.32..15640..448956...9057366...89060732...716467630...4083208500...20012299980
.32..30620.1112546..29402376..346013066..3360812402..22177936206..125265598534
.32..60192.2766188..95651698.1346084716.15777745722.120522456308..784380367170
.32.118756.6890602.311754322.5240401580.74117488694.655151391416.4912998973440
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..468
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +10*a(n-6) -20*a(n-7) -16*a(n-12) +32*a(n-13)
Empirical for row n:
n=1: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8); also polynomial of degree 6 plus a degree 0 quasipolynomial with period 2
n=2: [order 18; also polynomial of degree 7 plus a cubic quasipolynomial with period 12]
EXAMPLE
Some solutions for n=3 k=4
..2....4....4....4....1....4....3....3....3....2....2....1....2....1....2....2
..1....3....4....4....4....3....0....4....4....0....0....4....4....3....3....0
..1....1....1....0....2....0....0....3....2....0....4....4....4....3....0....3
..1....3....1....1....4....0....4....2....0....2....1....4....1....4....2....0
..1....0....1....2....1....3....0....2....0....2....3....0....2....0....4....3
..1....2....3....0....4....1....2....3....0....4....3....1....4....4....4....3
..3....0....1....2....1....4....1....1....4....1....0....0....4....4....0....4
..1....3....1....2....1....3....0....0....0....2....0....0....1....4....3....3
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 28 2014
STATUS
approved