login
A247995
T(n,k)=Number of length n+5 0..k arrays with no disjoint triples in any consecutive six terms having the same sum
14
32, 396, 32, 2292, 702, 32, 9080, 5316, 1264, 32, 28020, 27800, 12612, 2314, 32, 72972, 104620, 86736, 30404, 4308, 32, 167576, 329742, 397988, 274204, 74132, 8150, 32, 349392, 884032, 1514488, 1530604, 874884, 182084, 15640, 32, 674520, 2131356
OFFSET
1,1
COMMENTS
Table starts
.32....396....2292......9080......28020.......72972.......167576........349392
.32....702....5316.....27800.....104620......329742.......884032.......2131356
.32...1264...12612.....86736.....397988.....1514488......4733944......13169096
.32...2314...30404....274204....1530604.....7023686.....25559480......81945184
.32...4308...74132....874884....5921416....32751572....138568024.....511733540
.32...8150..182084...2808970...22963328...153115250....752268668....3199929582
.32..15640..448956...9057366...89060732...716467630...4083208500...20012299980
.32..30620.1112546..29402376..346013066..3360812402..22177936206..125265598534
.32..60192.2766188..95651698.1346084716.15777745722.120522456308..784380367170
.32.118756.6890602.311754322.5240401580.74117488694.655151391416.4912998973440
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +10*a(n-6) -20*a(n-7) -16*a(n-12) +32*a(n-13)
Empirical for row n:
n=1: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8); also polynomial of degree 6 plus a degree 0 quasipolynomial with period 2
n=2: [order 18; also polynomial of degree 7 plus a cubic quasipolynomial with period 12]
EXAMPLE
Some solutions for n=3 k=4
..2....4....4....4....1....4....3....3....3....2....2....1....2....1....2....2
..1....3....4....4....4....3....0....4....4....0....0....4....4....3....3....0
..1....1....1....0....2....0....0....3....2....0....4....4....4....3....0....3
..1....3....1....1....4....0....4....2....0....2....1....4....1....4....2....0
..1....0....1....2....1....3....0....2....0....2....3....0....2....0....4....3
..1....2....3....0....4....1....2....3....0....4....3....1....4....4....4....3
..3....0....1....2....1....4....1....1....4....1....0....0....4....4....0....4
..1....3....1....2....1....3....0....0....0....2....0....0....1....4....3....3
CROSSREFS
Sequence in context: A087024 A128798 A086942 * A247996 A068548 A195191
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 28 2014
STATUS
approved