

A247942


a(n) = n if n <= 3, otherwise the smallest number not occurring earlier having at least one common factor with a(n2)*a(n3), but none with a(n1).


5



1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 7, 10, 21, 16, 25, 12, 35, 18, 49, 20, 27, 22, 39, 11, 13, 24, 55, 26, 33, 28, 45, 32, 51, 38, 17, 19, 30, 119, 36, 65, 34, 57, 40, 63, 44, 69, 50, 23, 42, 85, 46, 75, 52, 81, 56, 87, 62, 29, 31, 48
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The sequence differs from A098550 from a(11) onward.
The sequence is a permutation of the natural numbers. The proof is similar to that for A098550 (with minor changes).  Vladimir Shevelev, Jan 14 2015


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015.


MAPLE

for n from 1 to 3 do
a[n]:= n:
b[n]:= 1:
od:
for n from 4 to 1000 do
q:= a[n2]*a[n3];
for k from 4 do
if not assigned(b[k]) and igcd(k, q) > 1 and igcd(k, a[n1]) = 1 then
a[n]:= k;
b[k]:= 1;
break
fi
od:
od:
seq(a[i], i=1..1000); # Robert Israel, Jan 12 2015


MATHEMATICA

a[n_ /; n <= 3] := n; a[n_] := a[n] = For[aa = Table[a[j], {j, 1, n1}]; k=4, True, k++, If[FreeQ[aa, k] && !CoprimeQ[k, a[n2]*a[n3]] && CoprimeQ[k, a[n1]], Return[k]]]; Table[a[n], {n, 1, 60}] (* JeanFrançois Alcover, Jan 12 2015 *)


CROSSREFS

Cf. A098550, A249167, A251604, A247225.
Sequence in context: A115305 A210747 A329425 * A098550 A256224 A255509
Adjacent sequences: A247939 A247940 A247941 * A247943 A247944 A247945


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Jan 11 2015


EXTENSIONS

More terms from JeanFrançois Alcover, Jan 12 2015


STATUS

approved



