login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A247911(k+1) = A247911(k) + 1.
3

%I #4 Sep 27 2014 19:03:02

%S 1,3,5,6,8,10,11,13,14,16,18,19,21,23,24,26,28,29,31,33,34,36,38,39,

%T 41,43,44,46,48,49,51,53,54,56,58,59,61,63,65,66,68,70,71,73,75,76,78,

%U 80,82,83,85,87,88,90,92,94,95,97,99,100,102,104,106,107

%N Numbers k such that A247911(k+1) = A247911(k) + 1.

%C Complement of A247912.

%H Clark Kimberling, <a href="/A247913/b247913.txt">Table of n, a(n) for n = 1..500</a>

%e A247911(n+1) - A247911(n) = (1,0,1,0,1,1,0,1,0,1,1,0,1,1,0,1,0,1,1,0,...), and a(n) is the position of the n-th 1.

%t $RecursionLimit = 1000; $MaxExtraPrecision = 1000;

%t z = 300; u[1] = 0; u[2] = 1; u[n_] := u[n] = u[n - 1] + u[n - 2]/(n - 2);

%t f[n_] := f[n] = Select[Range[z], (2 # + 1)/u[2 # + 1] - E < n^-n &, 1];

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A247911 *)

%t w = Differences[u]

%t Flatten[Position[w, 0]] (* A247912 *)

%t Flatten[Position[w, 1]] (* A247913 *)

%Y Cf. A247911, A247912, A247908, A247914.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Sep 27 2014