login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The 10th Hermite Polynomial evaluated at n: H_10(n) = 1024*n^10 - 23040*n^8 + 161280*n^6 - 403200*n^4 + 302400*n^2 - 30240.
2

%I #21 Sep 08 2022 08:46:09

%S -30240,8224,200416,-3093984,125984224,3275529760,30232000224,

%T 174454774816,753610971616,2661760648224,8093278209760,21900944840224,

%U 53969864949216,123139662877216,263393520320224,533257736009760,1029623343008224,1907515621443616

%N The 10th Hermite Polynomial evaluated at n: H_10(n) = 1024*n^10 - 23040*n^8 + 161280*n^6 - 403200*n^4 + 302400*n^2 - 30240.

%H Vincenzo Librandi, <a href="/A247855/b247855.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)

%F G.f.: (-30240+340864*x-1553248*x^2+143360*x^3+159704768*x^4 +1703150336*x^5+1689179456*x^6+169683968*x^7-4846240*x^8 +109952*x^9+8224*x^10)/(1-x)^11.

%F a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11).

%t Table[1024 n^10 - 23040 n^8 + 161280 n^6 - 403200 n^4 + 302400 n^2 - 30240, {n, 0, 30}] (* or *) CoefficientList[Series[(-30240 + 340864 x - 1553248 x^2 + 143360 x^3 + 159704768 x^4 + 1703150336 x^5 + 1689179456 x^6 + 169683968 x^7 - 4846240 x^8 + 109952 x^9 + 8224 x^10)/(1-x)^11, {x, 0, 30}], x]

%o (Magma) [1024*n^10-23040*n^8+161280*n^6-403200*n^4 +302400*n^2-30240: n in [0..30]]; /* or */ I:=[-30240, 8224,200416,-3093984,125984224,3275529760,30232000224, 174454774816,753610971616,2661760648224,8093278209760]; [n le 11 select I[n] else 11*Self(n-1)-55*Self(n-2)+165*Self(n-3)-330*Self(n-4)+462*Self(n-5)-462*Self(n-6)+330*Self(n-7)-165*Self(n-8)+55*Self(n-9)-11*Self(n-10)+Self(n-11): n in [1..30]];

%o (Python)

%o m = [3715891200, -16721510400, 30036787200, -27095040000, 12533391360, -2612736000, 139499520, 3640320, 153728, -38464, -30240]

%o A247855_list = [m[-1]]

%o for _ in range(10**1):

%o ....for i in range(10):

%o ........m[i+1]+= m[i]

%o ....A247855_list.append(m[-1]) # _Chai Wah Wu_, Nov 09 2014

%o (PARI) a(n)=polhermite(10,n) \\ _Charles R Greathouse IV_, Jan 29 2016

%Y Cf. similar sequences listed in A247850.

%K sign,easy

%O 0,1

%A _Vincenzo Librandi_, Sep 26 2014