login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].
3

%I #11 Oct 23 2023 10:08:17

%S 1,6,9,7,7,7,4,6,5,7,9,6,4,0,0,7,9,8,2,0,0,6,7,9,0,5,9,2,5,5,1,7,5,2,

%T 5,9,9,4,8,6,6,5,8,2,6,2,9,9,8,0,2,1,2,3,2,3,6,8,6,3,0,0,8,2,8,1,6,5,

%U 3,0,8,5,2,7,6,4,6,4,1,1,1,2,9,9,6,9,6,5,6,5,4,1,8,2,6,7,6,5,6,8,7,2,3,9,8

%N Decimal expansion of the value of the continued fraction [1; 1, 2, 3, 4, 5, ...].

%C Equals 1+A052119.

%H MathOverflow, <a href="http://mathoverflow.net/questions/177481">Is any particular algebraic number known to have unbounded continued fraction coefficients?</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ContinuedFractionConstant.html">Continued Fraction Constant</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction</a>

%F 1 + I_1(2) / I_0(2), where I_n(x) gives the modified Bessel function of the first kind.

%e 1.697774657964007982006790592551752599486658262998...

%t FromContinuedFraction[Join[{1}, Range[50]]] // RealDigits[#, 10, 105]& // First

%t (* or *) 1+BesselI[1, 2]/BesselI[0, 2] // RealDigits[#, 10, 105]& // First

%o (PARI) 1+besseli(1,2)/besseli(0,2) \\ _Charles R Greathouse IV_, Oct 23 2023

%Y Cf. A001040, A001053, A052119, A060997, A070910, A096789.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Sep 25 2014