login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=2..n} 9^k.
2

%I #17 May 24 2024 14:24:06

%S 0,81,810,7371,66420,597861,5380830,48427551,435848040,3922632441,

%T 35303692050,317733228531,2859599056860,25736391511821,

%U 231627523606470,2084647712458311,18761829412124880,168856464709124001,1519708182382116090,13677373641439044891

%N a(n) = Sum_{k=2..n} 9^k.

%H Vincenzo Librandi, <a href="/A247842/b247842.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-9).

%F G.f.: 81*x^2/((1-x)*(1-9*x)).

%F a(n) = a(n-1) + 9^n = (9^(n+1) - 81)/8 = 10*a(n-1) - 9*a(n-2).

%F a(n) = A052386(n) - 9. - _Michel Marcus_, Sep 25 2014

%p A247842:=n->add(9^k, k=2..n): seq(A247842(n), n=1..30); # _Wesley Ivan Hurt_, Sep 26 2014

%t RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 9^n}, a, {n, 30}] (* or *) CoefficientList[Series[81 x / ((1 - x) (1 - 9 x)), {x, 0, 30}], x]

%o (Magma) [0] cat [&+[9^k: k in [2..n]]: n in [2..30]]; /* or */ [(9^(n+1)-81)/8: n in [1..30]];

%Y Cf. similar sequences listed in A247817.

%Y Cf. A052386.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Sep 25 2014