%I
%S 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,19,23,40,42,43,46,47,49,50,
%T 52,53,54,56,57,59,62,63,67,69,72,73,79,80,81,82,83,84,85,86,87,89,92,
%U 93,102,103,106,107,109,123,140,142,143,146,147,149,150,152
%N Numbers in decimal representation with distinct digits, such that in Norwegian and Swedish their digits are in alphabetic order.
%C List of decimal digits, alphabetically sorted by their names in Norwegian resp. Swedish: 8 _ åtte _ åtta, 1 _ en/ett _ en/ett, 5 _ fem _ fem, 4 _ fire _ fyra, 0 _ null _ noll, 6 _ seks _ sex, 7 _ syv/sju _ sju, 9 _ ti _ tio, 2 _ to _ två, 3 _ tre _ tre;
%C Finite sequence with last and largest term a(992) = 8154067923.
%C From _Charles Coker_, Jul 18 2019: (Start)
%C The word tio (10) should probably be nio (9). Sources: 1) Wikipedia, List of numbers in various languages: Germanic languages, 2) Swedish Language Blog, Swedish numbers 1100.
%C The names are sorted using English sorting rules. In Swedish, the letter Å/å, like in åtta (8), comes after z. Alphabetical order is a, ..., z, å, ä, ö. Using Swedish sorting rules and nio for 9, the sequence for 09 would be 1, 5, 4, 9, 0, 6, 7, 3, 2, 8. Sources: 1) Swedish speaker (not me), 2) Wikipedia: Swedish alphabet.
%C (End)
%H Reinhard Zumkeller, <a href="/A247809/b247809.txt">Table of n, a(n) for n = 1..992</a>
%H Swedish Language Blog, <a href="https://blogs.transparent.com/swedish/swedishnumbers1100/">Swedish numbers 1100</a>
%H Wikipedia, <a href="http://de.wikipedia.org/wiki/Zahlen_in_unterschiedlichen_Sprachen#0_bis_10">Zahlen in unterschiedlichen Sprachen</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/List_of_numbers_in_various_languages">List of numbers in various languages</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/List_of_numbers_in_various_languages#Germanic_languages">List of numbers in various languages: Germanic languages</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Swedish_alphabet">Swedish alphabet</a>
%o (Haskell)
%o import Data.IntSet (fromList, deleteFindMin, union)
%o import qualified Data.IntSet as Set (null)
%o a247809 n = a247809_list !! (n1)
%o a247809_list = 0 : f (fromList [1..9]) where
%o f s  Set.null s = []
%o  otherwise = x : f (s' `union`
%o fromList (map (+ 10 * x) $ tail $ dropWhile (/= mod x 10) digs))
%o where (x, s') = deleteFindMin s
%o digs = [8, 1, 5, 4, 0, 6, 7, 9, 2, 3]
%Y Intersection of A010784 and A247759.
%Y Cf. A247800 (Czech), A247801 (Danish), A247802 (Dutch), A053433 (English), A247803 (Finnish), A247804 (French), A247805 (German), A247806 (Hungarian), A247807 (Italian), A247808 (Latin), A247810 (Polish), A247807 (Portuguese), A247811 (Russian), A247812 (Slovak), A247813 (Spanish), A247814 (Turkish).
%K nonn,base,word,fini,full
%O 1,3
%A _Reinhard Zumkeller_, Oct 05 2014
