Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 29 2022 05:50:27
%S 0,0,1,4,29,128,683,3048,15631,73584,367878,1766272,8772765,42778568,
%T 212026492,1041894304,5164955809,25511089124,126587331646,
%U 627213797064,3115744498691,15471098709336,76936461658184,382598697899276,1904401873987964,9480893249387192
%N Total area below all lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y and consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3).
%H Alois P. Heinz, <a href="/A247748/b247748.txt">Table of n, a(n) for n = 0..700</a>
%F a(n) = Sum_{k>=1} k * A247749(n,k).
%p b:= proc(x, y) option remember; `if`(y<0 or x<y, 0,
%p `if`(x=0, [1, 0], add((p->p+[0, p[1]*(y+j/2)])
%p (b(x-1, y+j)), j=[-1, -3, 0, 1, 3])))
%p end:
%p a:= n-> b(n, 0)[2]:
%p seq(a(n), n=0..30);
%t b[x_, y_] := b[x, y] = If[y < 0 || x < y, {0, 0},
%t If[x == 0, {1, 0}, Sum[Function[p, p + {0, p[[1]]*(y + j/2)}][
%t b[x - 1, y + j]], {j, {-1, -3, 0, 1, 3}}]]];
%t a[n_] := b[n, 0][[2]];
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 29 2022, after _Alois P. Heinz_ *)
%Y Cf. A240904, A247749.
%K nonn
%O 0,4
%A _Alois P. Heinz_, Sep 23 2014