login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247731
Number of length 5+3 0..n arrays with no disjoint pairs in any consecutive four terms having the same sum
1
8, 656, 9392, 77236, 408644, 1668072, 5532212, 15837692, 40185476, 92896600, 198499032, 397892044, 754772008, 1366836516, 2376338664, 3988754296, 6488751232, 10269159692, 15853887820, 23940629936, 35432070592, 51496627304
OFFSET
1,1
COMMENTS
Row 5 of A247726
LINKS
FORMULA
Empirical: a(n) = -3*a(n-1) -6*a(n-2) -9*a(n-3) -10*a(n-4) -7*a(n-5) +2*a(n-6) +17*a(n-7) +36*a(n-8) +54*a(n-9) +64*a(n-10) +59*a(n-11) +35*a(n-12) -9*a(n-13) -67*a(n-14) -128*a(n-15) -177*a(n-16) -199*a(n-17) -182*a(n-18) -122*a(n-19) -24*a(n-20) +98*a(n-21) +222*a(n-22) +323*a(n-23) +378*a(n-24) +372*a(n-25) +299*a(n-26) +167*a(n-27) -5*a(n-28) -189*a(n-29) -354*a(n-30) -470*a(n-31) -516*a(n-32) -482*a(n-33) -372*a(n-34) -202*a(n-35) +202*a(n-37) +372*a(n-38) +482*a(n-39) +516*a(n-40) +470*a(n-41) +354*a(n-42) +189*a(n-43) +5*a(n-44) -167*a(n-45) -299*a(n-46) -372*a(n-47) -378*a(n-48) -323*a(n-49) -222*a(n-50) -98*a(n-51) +24*a(n-52) +122*a(n-53) +182*a(n-54) +199*a(n-55) +177*a(n-56) +128*a(n-57) +67*a(n-58) +9*a(n-59) -35*a(n-60) -59*a(n-61) -64*a(n-62) -54*a(n-63) -36*a(n-64) -17*a(n-65) -2*a(n-66) +7*a(n-67) +10*a(n-68) +9*a(n-69) +6*a(n-70) +3*a(n-71) +a(n-72)
EXAMPLE
Some solutions for n=4
..3....1....1....4....3....1....1....1....4....2....1....4....1....0....4....0
..4....1....3....1....0....3....0....4....2....3....3....4....0....1....1....2
..4....3....4....1....4....0....4....4....4....0....3....2....1....0....3....0
..1....4....1....0....2....1....4....3....4....4....2....1....4....0....1....0
..0....3....4....4....1....0....4....0....1....4....1....4....4....4....1....4
..1....0....2....1....1....2....3....2....2....3....3....0....3....1....4....3
..1....3....0....2....3....4....2....2....4....4....1....2....4....1....3....4
..1....2....3....4....0....3....0....2....4....1....0....3....2....3....3....0
CROSSREFS
Sequence in context: A267968 A253268 A235368 * A231849 A159621 A015106
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2014
STATUS
approved