login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape T; triangle T(n,k), n>=0, 0<=k<=max(0,floor(2*(n-1)/3)), read by rows.
5

%I #15 Feb 06 2017 19:04:05

%S 1,1,5,50,6,437,62,2,3270,700,36,21720,5712,506,12,160593,48364,5444,

%T 282,6,1209537,425638,57648,3836,122,8999307,3578302,576791,48688,

%U 2226,40,66054288,29550476,5500946,558036,33400,1056,10,485082083,239927980,50762537,6035146,440480,19180,380

%N Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape T; triangle T(n,k), n>=0, 0<=k<=max(0,floor(2*(n-1)/3)), read by rows.

%C Sum_{k>0} k * T(n,k) = A247740(n).

%H Alois P. Heinz, <a href="/A247707/b247707.txt">Rows n = 0..175, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>

%e T(4,2) = 2:

%e ._____._. ._._____.

%e |_. ._| | | |_. ._|

%e | | |_. | | ._| | |

%e | |_| | | | | |_| |

%e | ._| |_| |_| |_. |

%e |_|_____| |_____|_| .

%e Triangle T(n,k) begins:

%e 00 : 1;

%e 01 : 1;

%e 02 : 5;

%e 03 : 50, 6;

%e 04 : 437, 62, 2;

%e 05 : 3270, 700, 36;

%e 06 : 21720, 5712, 506, 12;

%e 07 : 160593, 48364, 5444, 282, 6;

%e 08 : 1209537, 425638, 57648, 3836, 122;

%e 09 : 8999307, 3578302, 576791, 48688, 2226, 40;

%e 10 : 66054288, 29550476, 5500946, 558036, 33400, 1056, 10;

%Y Row sums give A174249 or A233427(n,5).

%Y Column k=0 gives A247771.

%Y Cf. A247740.

%K nonn,tabf

%O 0,3

%A _Alois P. Heinz_, Sep 22 2014