Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:46:09
%S 1,0,7,6,6,3,5,7,3,2,8,9,5,1,7,8,0,0,8,9,6,5,3,7,9,7,5,0,2,4,3,2,2,6,
%T 2,8,2,8,3,8,2,6,9,7,0,3,1,3,5,9,8,6,0,5,3,0,2,7,7,3,5,6,9,5,9,8,9,7,
%U 9,9,6,9,1,4,0,1,3,2,3,7,4,1,5,5,0,2,4,4,3,8,0,4,6,7,7,0,8,8,5,1,9,4,5
%N Decimal expansion of the integral over the square [0,1]x[0,1] of sqrt(1+(x-y)^2) dx dy.
%C The average length of chords in a unit square drawn between two points uniformly and independently chosen at random on two opposite sides. - _Amiram Eldar_, Aug 08 2020
%H G. C. Greubel, <a href="/A247674/b247674.txt">Table of n, a(n) for n = 1..10000</a>
%H D. H. Bailey and J. M. Borwein, <a href="https://escholarship.org/uc/item/4281090t">Highly Parallel, High-Precision Numerical Integration</a>, Lawrence Berkeley National Laboratory (2005), p. 9.
%H Philip W. Kuchel and Rodney J. Vaughan, <a href="https://www.jstor.org/stable/2689989">Average lengths of chords in a square</a>, Mathematics Magazine, Vol. 54, No. 5 (1981), pp. 261-269.
%F Equals 2/3 - sqrt(2)/3 + arcsinh(1).
%F Equals 2*A244921 + A247674 = (2 + sqrt(2) + 5*log(1+sqrt(2)))/3.
%e 1.076635732895178008965379750243226282838269703135986...
%t RealDigits[2/3 - Sqrt[2]/3 + ArcSinh[1], 10, 103] // First
%o (PARI) default(realprecision, 100); (2 + sqrt(2) + 5*log(1+sqrt(2)))/3 \\ _G. C. Greubel_, Aug 31 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (2 + Sqrt(2) + 5*Log(1+Sqrt(2)))/3; // _G. C. Greubel_, Aug 31 2018
%Y Cf. A244921.
%K nonn,cons
%O 1,3
%A _Jean-François Alcover_, Sep 22 2014