login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
5

%I #9 Sep 26 2014 21:32:43

%S 8,9,10,11,14,20,24,28,37,47,51,54,57,58,59,62,63,69,81,82,85,92,106,

%T 121,128,129,147,148,149,150,161,162,165,168,181,182,183,186,190,200,

%U 201,214,217,218,219,225,226,227,228,232,236,241,245,248,249,258

%N Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.

%C Every positive integer lies in exactly one of these: A247631, A247632, A247633, A247634. Deleting the initial 1 from the representation of r gives the representation of s.

%H Clark Kimberling, <a href="/A247631/b247631.txt">Table of n, a(n) for n = 1..1181</a>

%e r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ...

%e s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ...

%e so that a(1) = 8 and a(2) = 9.

%t z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]];

%t u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]

%t v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]

%t t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}];

%t t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}];

%t t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}];

%t t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}];

%t Flatten[Position[t1, 1]] (* A247631 *)

%t Flatten[Position[t2, 1]] (* A247632 *)

%t Flatten[Position[t3, 1]] (* A247633 *)

%t Flatten[Position[t4, 1]] (* A247634 *)

%Y Cf. A247632, A247633, A247634, A247519.

%K nonn,easy,base

%O 1,1

%A _Clark Kimberling_, Sep 23 2014