login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the coefficient c_md in c_md*log(N)^(1/rho), the asymptotic mean number of distinct factors in a random factorization of n <= N.
0

%I #24 Jun 11 2024 01:40:19

%S 1,4,8,7,9,1,5,9,7,1,6,7,8,1,5,7,8,9,2,8,7,1,6,8,6,3,0,5,4,6,5,5,6,6,

%T 0,7,2,7,9,1,9,8,8,4,9,0,4,5,2,7,1,7,9,1,8,9,7,1,1,1,7,9,7,4,5,3,8,5,

%U 7,8,5,4,4,4,6,2,5,3,5,4,3,5,6,8,6,5,8,9,2,4,8,7,1,6,6,3,7,1,2,2,8

%N Decimal expansion of the coefficient c_md in c_md*log(N)^(1/rho), the asymptotic mean number of distinct factors in a random factorization of n <= N.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2024, p. 37.

%F c_md = (-1/rho)*Gamma(-1/rho)*(-1/zeta'(rho))^(1/rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.

%e 1.48791597167815789287168630546556607279198849...

%t digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits + 5]; cmd = (-1/rho)*Gamma[-1/rho]*(-1/Zeta'[rho])^(1/rho); RealDigits[cmd, 10, digits] // First

%Y Cf. A107311, A217598, A247667.

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Sep 22 2014