Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 05 2021 18:23:01
%S 1,2,3,5,6,8,11,13,15,17,21,25,27,31,34,39,43,48,52,56,63,67,73,80,84,
%T 90,96,104,111,117,126,132,140,147,154,165,172,183,189,198,210,219,
%U 229,237,247,260,270,282,292,302
%N Number of integer-sided acute triangles with largest side n.
%H Vladimir Letsko, <a href="http://dxdy.ru/post909787.html#p909787">Mathematical Marathon, problem 192</a> (in Russian).
%F a(n) = Sum_{j=0..floor(n*(1 - sqrt(2)/2))} (n - j - floor(sqrt(2*j*n - j^2))). - _Anton Nikonov_, Oct 06 2014
%F a(n) = (1/8)*(-4*ceiling((n - 1)/sqrt(2)) + 4*n^2 - A000328(n) + 1), n > 1. - _Mats Granvik_, May 23 2015
%e a(3) = 3 because there are 3 integer-sided acute triangles with largest side 3: (1,3,3); (2,3,3); (3,3,3).
%p tr_a:=proc(n) local a,b,t,d;t:=0:
%p for a to n do
%p for b from max(a,n+1-a) to n do
%p d:=a^2+b^2-n^2:
%p if d>0 then t:=t+1 fi
%p od od;
%p t; end;
%t a[ n_] := Length @ FindInstance[ n >= b >= a >= 1 && n < b + a && n^2 < b^2 + a^2, {a, b}, Integers, 10^9]; (* _Michael Somos_, May 24 2015 *)
%o (PARI) a(n) = sum(j=0, n*(1 - sqrt(2)/2), n - j - floor(sqrt(2*j*n - j^2))); \\ _Michel Marcus_, Oct 07 2014
%o (PARI) {a(n) = sum(j=0, n - sqrtint(n*n\2) - 1, n - j - sqrtint(2*j*n - j*j))}; /* _Michael Somos_, May 24 2015 */
%Y Cf. A046080, A002623, A224921, A247586, A247587, A247589.
%K nonn
%O 1,2
%A _Vladimir Letsko_, Sep 20 2014