login
A247534
Number of length 2+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.
1
8, 45, 136, 317, 600, 1033, 1616, 2409, 3400, 4661, 6168, 8005, 10136, 12657, 15520, 18833, 22536, 26749, 31400, 36621, 42328, 48665, 55536, 63097, 71240, 80133, 89656, 99989, 111000, 122881, 135488, 149025, 163336, 178637, 194760, 211933, 229976
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Also as a cubic plus a linear quasipolynomial with period 2:
Empirical for n mod 2 = 0: a(n) = (9/2)*n^3 + (3/2)*n^2 + 1*n + 1
Empirical for n mod 2 = 1: a(n) = (9/2)*n^3 + (3/2)*n^2 - (1/2)*n + (5/2).
Empirical g.f.: x*(8 + 29*x + 38*x^2 + 32*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 07 2018
EXAMPLE
Some solutions for n=6:
..4....0....4....5....6....4....3....3....0....4....3....0....6....5....3....0
..3....4....4....4....1....2....0....2....5....4....5....1....3....4....1....2
..3....6....3....2....4....3....3....4....1....5....5....3....2....6....4....0
..4....2....3....3....3....3....0....3....6....5....3....4....5....5....6....2
..4....4....4....3....6....4....3....1....2....6....3....6....0....5....3....0
CROSSREFS
Row 2 of A247533.
Sequence in context: A153828 A247834 A210378 * A100648 A128091 A119950
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 18 2014
STATUS
approved