login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2*floor(sqrt(prime(k))) = floor(2*sqrt(prime(k))).
4

%I #18 Oct 24 2023 10:09:27

%S 1,3,5,7,8,10,12,13,16,19,20,23,24,26,27,28,29,31,32,35,36,40,41,42,

%T 45,46,49,50,51,52,55,56,57,58,62,67,68,73,74,75,79,80,81,86,87,88,89,

%U 93,94,95,96,100,101,106,107,108,109,115,116,117,118,123,124

%N Numbers k such that 2*floor(sqrt(prime(k))) = floor(2*sqrt(prime(k))).

%C A117767(a(n)) = A247485(a(n)); complement of A247515.

%H Reinhard Zumkeller, <a href="/A247514/b247514.txt">Table of n, a(n) for n = 1..10000</a>

%t A247514Q[k_]:=With[{r=Sqrt[Prime[k]]},2Floor[r]==Floor[2r]];

%t Select[Range[200],A247514Q] (* _Paolo Xausa_, Oct 23 2023 *)

%o (Haskell)

%o a247514 n = a247514_list !! (n-1)

%o a247514_list = filter (\x -> a117767 x == a247485 x) [1..]

%o (PARI) isok(k) = my(p=prime(k)); 2*sqrtint(p) == sqrtint(4*p); \\ _Michel Marcus_, Apr 29 2023

%Y Cf. A117767, A247485, A000196, A000040, A000006, A247515.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Sep 20 2014