The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247340 Numbers n such that each prime divisor of the semiprime n^2+1 is also a divisor of a^2+1 and b^2+1 respectively for some a, b < n. 2
 3, 8, 30, 46, 50, 76, 100, 144, 254, 266, 274, 286, 334, 380, 456, 494, 504, 516, 520, 526, 566, 664, 670, 726, 756, 810, 836, 844, 874, 1040, 1064, 1086, 1130, 1164, 1216, 1250, 1300, 1476, 1714, 1740, 1800, 1826, 1834, 1946, 1950, 2014, 2194, 2200, 2220, 2324 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Or numbers n such that n^2+1 = p*q, p and q primes => p | a^2+1 and q | b^2+1 for some a,b < n. Subsequence of A085722 and except the first term, a(n) is even. The squares of the sequence are 100, 144, 3364, 6084, 7396, 10404, 24964, 45796, 47524, 68644, 71824, 93636,... Observation : a(n) = p*q => there exists a and b such that a^2+1 = m*p and b^2+1 = m*q. (see the examples). LINKS Michel Lagneau, Table of n, a(n) for n = 1..1000 EXAMPLE 3^2+1 = 2*5 => 1^1+1 = 2 and 2^2+1 = 5 ; 8^2+1 = 5*13 => 3^2+1 = 2*5 and 5^2+1 = 2*13 ; 30^2+1 = 17*53 => 13^2+1=2*5*17 and 23^2+1 = 2*5*53 ; 46^2+1 = 29*73 => 17^2+1 = 2*5*29 and 27^2+1=2*5*73 ; 50^2+1 = 41*61 => 9^2+1 = 2*41 and 11^2+1 = 2*61 ; 76^2+1 = 53*109 => 23^2+1 = 2*5*53 and 33^2+1 = 2*5*109 ; 100^2+1 = 73*137 => 27^2+1=2*5*73 and 37^2+1 = 2*5*137 ; 144^2+1 = 89*233 => 55^2+1 = 2*17*89 and 89^2+1 = 2*17*233 ; 254^2+1 = 149*433 => 105^2+1 = 2*37*149 and 179^2+1 = 2*37*433 ; 266^2+1 = 173*409 => 93^2+1 = 2*5^2*173 and 143^2+1 = 2*5^2*409. MAPLE with(numtheory):lst:={}: for n from 1 to 3000 do: x:=factorset(n^2+1):n0:=nops(x): for i from 1 to n0 do: lst:=lst union {x[i]}: od: lst1:={}:nn:=n+1:xx:=factorset(nn^2+1):nn0:=nops(xx): for j from 1 to nn0 do: lst1:=lst1 union {xx[j]}: od: if nn0=2 and bigomega(nn^2+1)=2 and {xx[1], xx[2]} intersect lst = {xx[1], xx[2]} then printf(`%d, `, n+1): else fi: lst:=lst union lst1: od: CROSSREFS Cf. A085722, A144255. Sequence in context: A162054 A289486 A245361 * A067354 A344899 A148877 Adjacent sequences: A247337 A247338 A247339 * A247341 A247342 A247343 KEYWORD nonn AUTHOR Michel Lagneau, Sep 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 08:57 EDT 2024. Contains 372710 sequences. (Running on oeis4.)