Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 27 2015 23:32:55
%S 1,4,12,9,27,45,16,48,80,112,25,75,125,175,225,36,108,180,252,324,396,
%T 49,147,245,343,441,539,637,64,192,320,448,576,704,832,960,81,243,405,
%U 567,729,891,1053,1215,1377,100,300,500,700,900,1100,1300,1500,1700,1900,121,363
%N Triangle read by rows: T(n,k) = sum of k-th row of n X n square filled with odd numbers 1 through 2*n^2-1 reading across rows left-to-right.
%C See illustration in links. Column c(k) = (2*k - 1)*n^2. Diagonal d(m) = (2*n - 2*m + 1)*n^2.
%H Kival Ngaokrajang, <a href="/A247327/a247327.pdf">Illustration of initial terms</a>
%e Triangle begins:
%e 1
%e 4 12
%e 9 27 45
%e 16 48 80 112
%e 25 75 125 175 225
%e 36 108 180 252 324 396
%e 49 147 245 343 441 539 637
%o (Small Basic)
%o For n=1 To 20
%o For k=1 To n*n+(n-1)*(n-1) Step 2*n
%o c=0
%o For i=1 To n
%o If i=1 Then
%o a=k
%o Else
%o a=a+2
%o EndIf
%o c=c+a
%o EndFor
%o TextWindow.Write(c+", ")
%o EndFor
%o EndFor
%o (PARI) trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, (2*j-1) + (2*n)*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ _Michel Marcus_, Sep 15 2014
%Y Column: c(1) = A000290, c(2) = A033428, c(3) = A033429.
%Y Diagonal: d(1) = A015237, d(2) = A015238, d(3) = A015240.
%Y Rows sum: A000538.
%Y Cf. A241016.
%K nonn,tabl
%O 1,2
%A _Kival Ngaokrajang_, Sep 13 2014