Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 16 2014 02:35:05
%S 1,2,5,9,18,35,67,132,253,495,956,1859,3605,6994,13577,26333,51114,
%T 99159,192431,373372,724497,1405819,2727804,5293079,10270553,19929026,
%U 38670013,75035105,145597538,282516315,548192811,1063708916,2064013525,4004996055
%N Number of paths from (0,0) to the line x = n, each consisting of segments given by the vectors (1,1), (1,2), (1,-1), with vertices (i,k) satisfying 0 <= k <= 3.
%C Also, a(n) = number of strings s(0)..s(n) of integers such that s(0) = 0, and for i > 0, s(i) is in {0,1,2,3} and s(i) - s(i-1) is in {-1,1,2} for 1 <= i <= n; also, a(n) = n-th column sum of the array at A247321.
%H Clark Kimberling, <a href="/A247322/b247322.txt">Table of n, a(n) for n = 0..1000</a>
%F A247322(n) = A247323(n) + A247323(n+1) + A247325(n) + A247326(n).
%F Empirically, a(n) = 3*a(n-2) + 2*a(n-3) - a(n-4) and g.f. = (1 + 2*x + 2*x^2 + x^3)/(1 - 3 x^2 - 2 x^3 + x^4).
%e a(2) counts these 5 paths, each represented by a vector sum applied to (0,0): (0,2) + (0,1); (0,1) + (0,2); (0,1) + (0,1); (0,2) + (0,-1), (0,1) + (0,-1).
%t z = 25; t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[0, 3] = 0;
%t t[1, 3] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1];
%t t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2];
%t t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 3];
%t t[n_, 3] := t[n, 3] = t[n - 1, 1] + t[n - 1, 2];
%t u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, 3}]] (* A247321 *)
%t TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 3}]]]]
%t u1 = Table[t[n, k], {n, 0, z}, {k, 0, 3}];
%t v = Map[Total, u1] (* A247322 column sums *)
%Y Cf. A247049, A247321, A247323, A247325, A247326.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Sep 13 2014