Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 24 2020 17:04:43
%S 0,1,0,1,0,1,0,2,1,2,2,2,2,4,4,4,8,6,8,12,12,12,24,20,24,40,36,40,72,
%T 64,72,128,112,128,224,200,224,400,352,400,704,624,704,1248,1104,1248,
%U 2208,1952,2208,3904,3456,3904,6912,6112,6912,12224,10816,12224
%N Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 >= k <= 2, consisting of segments given by the vectors (1,1), (2,1), (1,-1).
%H Clark Kimberling, <a href="/A247302/b247302.txt">Table of n, a(n) for n = 0..1000</a>
%F (row 0, the bottom row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 1, r(2) = 0;
%F (row 1, the middle row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 1, r(1) = 0, r(2) = 2;
%F (row 2, the top row): r(n) = 2*r(n-2) + 2*r(n-3), with r(0) = 0, r(1) = 1, r(2) = 1.
%F From _Chai Wah Wu_, Jan 24 2020: (Start)
%F a(n) = 2*a(n-6) + 2*a(n-9) for n > 8.
%F G.f.: (-x^8 - x^5 - x^3 - x)/(2*x^9 + 2*x^6 - 1). (End)
%e First 10 columns:
%e 0 .. 1 .. 1 .. 2 .. 4 .. 6 .. 12 .. 20 .. 36 .. 64
%e 1 .. 0 .. 2 .. 2 .. 4 .. 8 .. 12 .. 24 .. 40 .. 72
%e 0 .. 1 .. 0 .. 2 .. 2 .. 4 .. 8 ... 12 .. 24 .. 40
%e T(4,1) counts these 4 paths, given as vector sums applied to (0,0):
%e (1,1) + (1,-1) + (1,1) + (1,-1);
%e (1,1) + (1,-1) + (1,-1) + (1,1);
%e (1,-1) + (1,1) + (1,-1) + (1,1);
%e (1,-1) + (1,1) + (1,1) + (1,-1).
%t t[0, 0] = 0; t[0, 1] = 1; t[0, 2] = 0;
%t t[1, 0] = 1; t[1, 1] = 0; t[1, 2] = 1;
%t t[2, 0] = 0; t[2, 1] = 2; t[2, 2] = 1; t[n_, 0] := t[n, 0] = t[n - 1, 1];
%t t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2] + t[n - 2, 0];
%t t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 2, 1];
%t TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]]
%t Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247302 *)
%Y Cf. A247050, A247301, A061275 (column sums).
%K nonn,tabf,easy
%O 0,8
%A _Clark Kimberling_, Sep 11 2014