Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 26 2022 14:48:04
%S 1,1,2,4,7,14,30,64,141,316,713,1626,3740,8659,20176,47274,111302,
%T 263201,624860,1488736,3558412,8530533,20505468,49413242,119347708,
%U 288873639,700582008,1702190653,4142880297,10099352082,24656876772,60283224645,147581756005
%N Number of weighted lattice paths B(n) having no uhd and no uHd strings.
%C B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
%C a(n) = A247294(n,0).
%H Alois P. Heinz, <a href="/A247295/b247295.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.
%F G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z- z^2 ).
%F D-finite with recurrence (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +3*(n-3)*a(n-4) +4*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-9)*a(n-8) +(2*n-21)*a(n-9) +(n-12)*a(n-10)=0. - _R. J. Mathar_, Jul 26 2022
%e a(6)=30 because among the 37 (=A004148(7)) members of B(6) only uhdhh, huhdh, hhuhd, Huhd, uhdH, uHdh, and huHd contain uhd or uHd (or both).
%p eq := G = 1+z*G+z^2*G+z^3*(G-z-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
%p # second Maple program:
%p b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
%p `if`(n=0, 1, b(n-1, y-1, `if`(t=2, 3, 0))+b(n-1, y,
%p `if`(t=1, 2, 0))+`if`(n>1, b(n-2, y, `if`(t=1, 2, 0))+
%p b(n-2, y+1, 1), 0)))
%p end:
%p a:= n-> b(n, 0$2):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 16 2014
%t b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y-1, If[t == 2, 3, 0]] + b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)
%Y Cf. A004148, A247291, A247293, A247294.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Sep 16 2014