login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having a total of k uhd and uHd strings.
5

%I #11 May 27 2015 05:17:42

%S 1,1,2,4,7,1,14,3,30,7,64,18,141,43,1,316,102,5,713,249,16,1626,608,

%T 49,3740,1489,143,1,8659,3669,400,7,20176,9058,1109,29,47274,22407,

%U 3046,105,111302,55560,8282,357,1,263201,138004,22385,1149,9

%N Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having a total of k uhd and uHd strings.

%C B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.

%C Row n contains 1 + floor(n/4) entries.

%C Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).

%C T(n,0) = A247295(n).

%C Sum(k*T(n,k), k=0..n) = A247296(n).

%H Alois P. Heinz, <a href="/A247294/b247294.txt">Rows n = 0..300, flattened</a>

%H M. Bona and A. Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.

%F G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z - z^2 + t*z + t*z^2).

%e T(6,1)=7 because we have uhdhh, huhdh, hhuhd, Huhd, uhdH, uHdh, and huHd.

%e Triangle starts:

%e 1;

%e 1;

%e 2;

%e 4;

%e 7,1;

%e 14,3;

%e 30,7;

%p eq := G = 1+z*G+z^2*G+z^3*(G-z-z^2+t*z+t*z^2)*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 22 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form

%p # second Maple program:

%p b:= proc(n, y, t) option remember; `if`(y<0 or y>n, 0, `if`(n=0, 1,

%p expand(b(n-1, y-1, 0)*`if`(t=2, x, 1)+b(n-1, y, `if`(t=1, 2, 0))

%p +`if`(n>1, b(n-2, y, `if`(t=1, 2, 0))+b(n-2, y+1, 1), 0))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):

%p seq(T(n), n=0..20); # _Alois P. Heinz_, Sep 16 2014

%t b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n, 0, If[n == 0, 1, Expand[b[n-1, y-1, 0]*If[t == 2, x, 1] + b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)

%Y Cf. A004148, A247290, A247292, A247295, A247296.

%K nonn,tabf

%O 0,3

%A _Emeric Deutsch_, Sep 16 2014