Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 19 2021 08:04:36
%S 1,1,7,25,101,397,1583,6337,25513,103161,418727,1705129,6963165,
%T 28504981,116941727,480667137,1979039633,8160609457,33696358983,
%U 139308985465,576583448021,2388853677981,9906585874127,41118073118785,170799570803001,710003165365417
%N Expansion of g.f. (-1)/(2*x^2+2*x) +(-2*x^3-3*x^2+1) / (sqrt(x^4+4*x^3-2*x^2-4*x+1)*(2*x^2+2*x)).
%F a(n) = (n+1)*sum(k=0..n, (C(n-k-1,k)*sum(i=0..n-k, 2^i*C(k+1,n-k-i) *C(k+i,k)*(-1)^(n-k-i)))/(k+1)).
%F Conjecture D-finite with recurrence: -(n+1)*(3*n-4)*a(n) +(9*n^2-3*n-4)*a(n-1) +2*(9*n^2-21*n+8)*a(n-2) +2*(-3*n^2+n+8)*a(n-3) +(-15*n^2+53*n-12)*a(n-4) -(3*n-1)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jan 25 2020
%F a(n) ~ 5^(1/4) * phi^(3*n + 2) / (2^(3/2) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Nov 19 2021
%o (Maxima) a(n):=(n+1)*sum((binomial(n-k-1,k)*sum(2^i*binomial(k+1,n-k-i)*binomial(k+i,k)*(-1)^(n-k-i),i,0,n-k))/(k+1),k,0,n);
%K nonn
%O 0,3
%A _Vladimir Kruchinin_, Nov 22 2014