Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jul 11 2024 16:53:35
%S 0,1,1,3,9,29,97,335,1185,4273,15649,58051,217673,823709,3141697,
%T 12065087,46613121,181049025,706549185,2769069091,10894034633,
%U 43008192637,170327978401,676511841743,2694115428769,10755172567089,43032673671137,172538997381155
%N Expansion of -1 - (sqrt(x^4 + 4*x^3 - 2*x^2 - 4*x + 1) - x^2 - 2*x - 1)/(4*x).
%F a(n) = Sum_{k=1..n} (binomial(n-k,k-1)*Sum_{i=0..n-k} 2^i*binomial(k,n-k-i)* binomial(k+i-1,k-1)*(-1)^(n-k-i)/k).
%F D-finite with recurrence: (n+1)*a(n) +2*(-2*n+1)*a(n-1) +2*(-n+2)*a(n-2) +2*(2*n-7)*a(n-3) +(n-5)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2020
%F From _Emanuele Munarini_, Jul 11 2024: (Start)
%F a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n+k-1,3*k)*2^k*Catalan(k).
%F a(n) ~ (1/2)*sqrt(sqrt(5)/(2*Pi))*(2+sqrt(5))^n/n^(3/2). (End)
%F a(n) = hypergeom([1/2, 1/2 - n/2, 1 - n/2, n], [1/3, 2/3, 2], 32/27) for n > 0. -_Peter Luschny_, Jul 11 2024
%t CoefficientList[Series[-1-(Sqrt[x^4+4*x^3-2*x^2-4*x+1]-x^2-2*x-1)/(4*x),{x,0,20}],x] (* _Vaclav Kotesovec_, Nov 23 2014 *)
%t a[0] := 0;
%t a[n_] := HypergeometricPFQ[{1/2, (1 - n)/2, 1 - n/2, n}, {1/3, 2/3, 2}, 32/27];
%t Table[a[n], {n, 0, 26}] (* _Peter Luschny_, Jul 11 2024 *)
%o (Maxima) a(n):=sum((binomial(n-k,k-1)*sum(2^i*binomial(k,n-k-i)*binomial(k+i-1,k-1)*(-1)^(n-k-i),i,0,n-k))/k,k,1,n);
%Y Cf. A000108.
%K nonn
%O 0,4
%A _Vladimir Kruchinin_, Nov 22 2014