Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:46:09
%S 7,12,18,24,36,42,54,60,72,90,96,114,126,132,144,162,180,186,204,216,
%T 222,240,252,270,294,306,312,324,330,342,384,396,414,420,450,456,474,
%U 492,504,522,540,546,576,582,594,600,636,672,684,690,702,720,726
%N Sum of divisors of even semiprimes.
%H Harvey P. Dale, <a href="/A247159/b247159.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = sigma(2*prime(n)) = A000203(2*A000040(n)) = A000203(A100484(n)).
%F a(n) = 3*prime(n) + 3 for n > 1. - _Charles R Greathouse IV_, Nov 22 2014
%e For n = 4 the 4th prime is 7 so the 4th even semiprime is 2*7 = 14. The sum of the divisors of 14 is 1 + 2 + 7 + 14 = 24, so a(4) = 24.
%t DivisorSigma[1,#]&/@Select[Range[2,500,2],PrimeOmega[#]==2&] (* _Harvey P. Dale_, Jan 09 2015 *)
%t Join[{7}, Rest[3 Prime[Range[5000]] + 3]] (* _Vincenzo Librandi_, Jan 09 2018 *)
%o (PARI) v=3*apply(k->k+1, primes(100)); v[1]=7; v \\ _Charles R Greathouse IV_, Nov 22 2014
%o (Magma) [7] cat [3*NthPrime(n)+3: n in [2..60]]; // _Vincenzo Librandi_, Jan 09 2018
%Y Cf. A000040, A000203, A083681, A100484, A245685.
%K nonn,easy
%O 1,1
%A _Omar E. Pol_, Nov 21 2014