login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247143
Lexicographically earliest permutation of the natural numbers such that in decimal representation d(n) is contained in a(n), where d is the digit sequence of the concatenation of the a-sequence, cf. A247149.
10
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 12, 30, 11, 21, 13, 40, 14, 15, 22, 16, 17, 23, 24, 50, 18, 34, 19, 25, 26, 27, 31, 36, 41, 37, 28, 32, 29, 42, 35, 60, 51, 38, 33, 43, 61, 39, 52, 45, 62, 46, 72, 47, 53, 71, 63, 56, 44, 81, 73, 57, 82, 48, 83, 92, 102
OFFSET
0,3
COMMENTS
By definition: A247149(n) is contained in a(n).
EXAMPLE
. n | d(n) | a(n) | n | d(n) | a(n) | n | d(n) | a(n) |
. ----+------+------+ -----+------+------+ ------+------+-------+
. 10 | 1 | 10 | 100 | 7 | 78 | 1000 | 5 | 885 |
. 11 | 0 | 20 | 101 | 1 | 101 | 1001 | 1 | 1040 |
. 12 | 2 | 12 | 102 | 6 | 69 | 1002 | 6 | 868 |
. 13 | 0 | 30 | 103 | 3 | 133 | 1003 | 3 | 1053 |
. 14 | 1 | 11 | 104 | 5 | 105 | 1004 | 3 | 1063 |
. 15 | 2 | 21 | 105 | 6 | 86 | 1005 | 5 | 895 |
. 16 | 3 | 13 | 106 | 4 | 114 | 1006 | 3 | 1073 |
. 17 | 0 | 40 | 107 | 4 | 124 | 1007 | 4 | 945 |
. 18 | 1 | 14 | 108 | 8 | 80 | 1008 | 6 | 869 |
. 19 | 1 | 15 | 109 | 1 | 106 | 1009 | 5 | 905 |
. 20 | 2 | 22 | 110 | 7 | 79 | 1010 | 1 | 1041 |
. 21 | 1 | 16 | 111 | 3 | 134 | 1011 | 7 | 876 |
. 22 | 1 | 17 | 112 | 5 | 115 | 1012 | 3 | 1083 |
. 23 | 3 | 23 | 113 | 7 | 87 | 1013 | 4 | 946 | .
PROG
(Haskell)
import Data.List (delete, find); import Data.Maybe (fromJust)
a247143 n = a247143_list !! n
a247143_list = [0..10] ++ f 11 (map show [11..]) where
f x zss = (read ys :: Int) : f (x + 1) (delete ys zss) where
ys = fromJust $ find (elem $ ds !! x) zss
ds = concatMap show a247143_list
CROSSREFS
Cf. A247144 (inverse), A247149 (digits), A247167 (fixed points).
Sequence in context: A302589 A375755 A210538 * A257128 A339541 A247808
KEYWORD
nonn,base,changed
AUTHOR
STATUS
approved