Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Oct 11 2017 05:11:46
%S 1,2,4,9,21,51,127,324,844,2243,6073,16737,46905,133556,386062,
%T 1132107,3365627,10137559,30920943,95457178,298128278,941574417,
%U 3006040523,9697677885,31602993021,104001763258,345524136076,1158570129917,3919771027105,13377907523151
%N The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation.
%C Also the number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in the same part. Example: For n=3 the a(3)=9 partitions are {}, 1, 2, 3, 12, 23, 13, 1|3, 123. - _Don Knuth_, Aug 07 2015
%H Alois P. Heinz, <a href="/A247100/b247100.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = 1 + Sum_{k=1..ceiling(n/2)} binomial(n+1, 2k)*Bell(k), where Bell(x) refers to Bell numbers (A000110).
%e The labeled-run binary strings can be written as follows.
%e For n=1: 0, 1.
%e For n=2: 00, 01, 10, 11.
%e For n=3: 000, 001, 010, 100, 011, 110, 111, 101, 102.
%e For n=4: 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 0111, 1110, 1111, 0101, 0102, 1001, 1002, 1010, 1020, 1011, 1022, 1101, 1102.
%e For n=5, the original binary string 10101 can be written as 10101, 10102, 10201, 10202, or 10203 because there are 3 runs of ones and Bell(3)=5.
%p with(combinat):
%p a:= n-> (t-> add(binomial(t, 2*j)*bell(j), j=0..t/2))(n+1):
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 10 2015
%t Table[1 + Sum[Binomial[n+1,2*k] * BellB[k],{k,1,Ceiling[n/2]}],{n,1,40}] (* _Vaclav Kotesovec_, Jan 08 2015 after _Andrew Woods_ *)
%Y Cf. A000110, A243634, A253409, A255706, A261041, A261134, A261489, A261492.
%K nonn
%O 0,2
%A _Andrew Woods_, Jan 01 2015
%E a(0)=1 prepended by _Alois P. Heinz_, Aug 08 2015