login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n)/(Product_{primes p dividing n } gcd(p - 1, n - 1)).
11

%I #89 Aug 01 2019 03:49:14

%S 1,1,1,2,1,2,1,4,3,4,1,4,1,6,2,8,1,6,1,8,3,10,1,8,5,12,9,4,1,8,1,16,5,

%T 16,6,12,1,18,6,16,1,12,1,20,3,22,1,16,7,20,8,8,1,18,10,24,9,28,1,16,

%U 1,30,9,32,3,4,1,32,11,8,1,24,1,36,10,12,15,24,1,32,27,40,1,24,4,42,14,40,1,24,2,44,15,46

%N a(n) = phi(n)/(Product_{primes p dividing n } gcd(p - 1, n - 1)).

%C a(n) = A000010(n)/A063994(n). - _Eric Chen_, Nov 29 2014

%C Does every natural number appear in this sequence? If so, do they appear infinitely many times? - _Eric Chen_, Nov 26 2014

%C A063994(n) must be a factor of EulerPhi(n). - _Eric Chen_, Nov 26 2014

%C Number n is (Fermat) pseudoprimes (or prime) to one in a(n) of its coprime bases. That is, b^(n-1) = 1 (mod n) for one in a(n) of numbers b coprime to n. - _Eric Chen_, Nov 26 2014

%C a(n) = 1 if and only if n is 1, prime (A000040), or Carmichael number (A002997). - _Eric Chen_, Nov 26 2014

%C a(A191311(n)) = 2. - _Eric Chen_, Nov 26 2014

%C a(p^n) = p^(n-1), where p is a prime. - _Eric Chen_, Nov 26 2014

%C a(A209211(n)) = EulerPhi(A209211(n)), because A063994(A209211(n)) = 1. - _Eric Chen_, Nov 26 2014

%H Charles R Greathouse IV, <a href="/A247074/b247074.txt">Table of n, a(n) for n = 1..10000</a>

%H Gérard P. Michon, <a href="http://www.numericana.com/answer/pseudo.htm">Pseudoprimes</a>

%F A003557(n) <= a(n) <= n, and a(n) is a multiple of A003557(n). - _Charles R Greathouse IV_, Nov 17 2014

%e EulerPhi(15) = 8, and that 15 is a Fermat pseudoprime in base 1, 4, 11, and 14, the total is 4 bases, so a(15) = 8/4 = 2.

%t a063994[n_] := Times @@ GCD[n - 1, First /@ FactorInteger@ n - 1]; a063994[1] = 1; a247074[n_] := EulerPhi[n]/a063994[n]; Array[a247074, 150]

%o (PARI) a(n)=my(f=factor(n));eulerphi(f)/prod(i=1,#f~,gcd(f[i,1]-1,n-1)) \\ _Charles R Greathouse IV_, Nov 17 2014

%Y Cf. A063994, A182816, A002997, A191311, A064234, A000010, A063994, A003557, A209211.

%K nonn,easy,hear

%O 1,4

%A _Eric Chen_, Nov 16 2014