login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247019
G.f. satisfies: A(x) = Sum_{n>=0} x^n * [ Sum_{k=0..n} C(n,k) * C(2*k,k) * A(x)^k ]^2.
1
1, 9, 229, 8265, 348349, 16015309, 778537149, 39348577689, 2046753733661, 108845415772629, 5890878814795401, 323408093688028781, 17966522918887184357, 1008117869403566779605, 57050765652157351532365, 3252460557853243186407529, 186619243293579737401397901, 10768643445899311909031558245
OFFSET
0,2
LINKS
FORMULA
G.f. satisfies: A(x) = 1 / AGM(1-x*(1+4*A(x)), sqrt((1-x)*(1-x*(1+4*A(x))^2)) ), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
a(n) ~ c * d^n / n^(3/2), where d = 63.0960591646291970170956677412581268961854502622276974361888132988405... and c = 0.194671854097221132646990457090704594779965159082067267258127815911... - Vaclav Kotesovec, Jan 29 2024
EXAMPLE
G.f.: A(x) = 1 + 9*x + 229*x^2 + 8265*x^3 + 348349*x^4 + 16015309*x^5 +...
such that
A(x) = 1 + x*(1 + 1*2*A(x))^2 + x^2*(1 + 2*2*A(x) + 1*6*A(x)^2)^2
+ x^3*(1 + 3*2*A(x) + 3*6*A(x)^2 + 1*20*A(x)^3)^2
+ x^4*(1 + 4*2*A(x) + 6*6*A(x)^2 + 4*20*A(x)^3 + 1*70*A(x)^4)^2
+ x^5*(1 + 5*2*A(x) + 10*6*A(x)^2 + 10*20*A(x)^3 + 5*70*A(x)^4 + 1*252*A(x)^5)^2
+ x^6*(1 + 6*2*A(x) + 15*6*A(x)^2 + 20*20*A(x)^3 + 15*70*A(x)^4 + 6*252*A(x)^5 + 1*924*A(x)^6)^2 +...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, Sqrt[(s^2*(1 + (3 + 8*s)*(r + 4*r*s)^3 + r*(1 - 4*s - 16*s^2) - r^2*(5 + 40*s + 96*s^2 + 64*s^3))) / (4*Pi*(-1 + r)*(1 - 2*r*(1 + 14*s + 32*s^2) + r^2*(1 + 28*s + 192*s^2 + 384*s^3)))]} /. FindRoot[{Pi*s == 2*EllipticK[-16*r*s^2/((-1 + r)*(-1 + r*(1 + 4*s)^2))] / Sqrt[(-1 + r)*(-1 + r*(1 + 4*s)^2)], (-1 + r)*EllipticE[-16*r*s^2/((-1 + r)*(-1 + r*(1 + 4*s)^2))] / (s*(-1 + r + 4*r*s)*Sqrt[(-1 + r)*(-1 + r*(1 + 4*s)^2)]) == Pi}, {r, 1/60}, {s, 3/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 29 2024 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = sum(m=0, n, x^m*sum(k=0, m, binomial(m, k) * binomial(2*k, k) * A^k +x*O(x^n) )^2 ) ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A = 1 / agm(1-x*(1+4*A), sqrt((1-x)*(1-x*(1+4*A)^2 +x*O(x^n))) )); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A197406 A197428 A295941 * A181205 A152101 A230178
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2014
STATUS
approved