Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Oct 25 2014 14:43:07
%S 0,6,12,18,24,30,38,44,50,56,62,70,76,82,88,94,102,108,114,120,126,
%T 134,140,146,152,158,166,172,178,184,190,196,202,210,216,222,228,234,
%U 242,248,254,260,266,274,280,286,292,298,306,312,318,324,330,338
%N Sequence B related to Fraenkel's (3,2)-Wythoff's game in Table 5 of Liu-Zhao (2014).
%C Needs better definition and more terms. I am having difficulty accessing this document. The complement, A', is presumably also missing from the OEIS, but we cannot be certain of that until the present sequence is extended.
%H Wen An Liu and Xiao Zhao, <a href="http://dx.doi.org/10.1016/j.dam.2014.08.009">Adjoining to (s,t)-Wythoff's game its P-positions as moves</a>, Discrete Applied Mathematics, 27 August 2014. See Table 5.
%p mex := proc(L)
%p local k;
%p for k from 0 do
%p if not k in L then
%p return k;
%p end if;
%p end do:
%p end proc:
%p A := proc(n,s,t)
%p option remember;
%p local a,b ;
%p if n = 0 then
%p 0;
%p else
%p a := [seq(procname(i,s,t),i=0..n-1)] ;
%p b := [seq(B(i,s,t),i=0..n-1)] ;
%p mex([op(a),op(b)]) ;
%p end if;
%p end proc;
%p B := proc(n,s,t)
%p option remember;
%p if n = 0 then
%p 0 ;
%p else
%p (s-1)*A(n,s,t)+n*(t+2) ;
%p end if;
%p end proc;
%p A246977 := proc(n)
%p B(n,3,2) ;
%p end proc:
%p seq(A246977(n),n=0..80) ; # _R. J. Mathar_, Oct 25 2014
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Sep 14 2014