login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246975 Number of 4-ary plane multitrees with n edges. 2
1, 1, 3, 10, 36, 121, 447, 1699, 6589, 25914, 103633, 419421, 1714463, 7068285, 29361629, 122764876, 516245009, 2181957489, 9264275600, 39495666700, 169000837410, 725574719515, 3124648750706, 13493792787415, 58422790497226, 253547380435914, 1102776319943605 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.

FORMULA

a(n) = Sum_{k=1..n+1} Sum_{i=1..k-1} Sum_{j=0..floor((n-i)/4)} (-1)^j*binomial(k, i)*binomial(i, j)*binomial(n-i, k-i-1)*binomial(n-4*j-1, i-1)/k for n > 0. - Andrew Howroyd, Feb 24 2020

PROG

(PARI) a(n)={my(m=4); if(n<1, n==0, sum(k=1, n+1, sum(i=1, k-1, sum(j=0, (n-i)\m, (-1)^j*binomial(k, i)*binomial(i, j)*binomial(n-i, k-i-1)*binomial(n-m*j-1, i-1)))/k))} \\ Andrew Howroyd, Feb 24 2020

CROSSREFS

Cf. A128720 (2-ary case), A246974 (3-ary case).

Sequence in context: A075316 A192142 A212962 * A047122 A047107 A149040

Adjacent sequences:  A246972 A246973 A246974 * A246976 A246977 A246978

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 14 2014

EXTENSIONS

Terms a(11) and beyond from Andrew Howroyd, Feb 24 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)