login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the real positive solution to eta(x) = x.
0

%I #23 May 24 2021 07:42:03

%S 6,2,9,3,3,4,0,9,4,0,0,9,3,7,2,7,6,7,5,5,6,4,8,0,5,0,2,5,8,9,3,2,6,1,

%T 3,7,6,4,7,2,0,7,6,4,6,8,6,6,1,8,5,3,5,5,0,6,8,8,5,8,0,2,3,1,9,7,2,6,

%U 9,2,8,5,2,9,1,5,5,7,4,6,2,1,1,0,4,2,0,0,7,9,7,5,5,6,1,9,4

%N Decimal expansion of the real positive solution to eta(x) = x.

%C Fixed point of Dirichlet eta function.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>.

%e 0.6293340940...

%t RealDigits[x /. FindRoot[DirichletEta[x] - x, {x, 0}, WorkingPrecision -> 120], 10, 100] [[1]] (* _Amiram Eldar_, May 24 2021 *)

%o (PARI) solve(n=0,2,(1-2^(1-n))*zeta(n)-n) \\ _Edward Jiang_, Sep 08 2014

%Y Cf. A197070, A267315, A267316.

%K nonn,cons

%O 0,1

%A _Michal Paulovic_, Sep 08 2014