%I #7 Sep 13 2014 14:55:36
%S 5,13,5,13,21,5,13,17,65,5,13,21,29,165,2805,5,13,61,317,445,1853,
%T 5933,30629,2,5,7,13,15,17,21,34,35,65,66,145,5402,5,13,3029,10205,
%U 11029,12773,28157,34973,42853,47965,53365,136165,184045,187493,219965,724205
%N Irregular triangular array: every periodic simple continued fraction CF represents a quadratic irrational (c + f*sqrt(d))/b, where b,c,f,d are integers and d is squarefree. Row n of this array shows the distinct values of d as CF ranges through the periodic continued fractions having period an ntuple of 1s and 3s.
%e First 5 rows:
%e 5 ... 13
%e 5 ... 13 ... 21
%e 5 ... 13 ... 17 .. 65
%e 5 ... 13 ... 21 .. 29 ... 165 .. 2805
%e 5 ... 13 ... 61 .. 317 .. 445 .. 1853 .. 5933 .. 30629
%e The following list shows for n = 3 the purely periodic continued fractions (with period an ntuple of 1s and 2s), each followed by the number r it represents, the minimal polynomial a*x^2 + b*x + c of r, and the discriminant, D = b^2  4*a*c, and the squarefree factor, d, of D.
%e [(1,1,1)] = (1+sqrt(5))/2, 1  x + x^2, D = 5 = d
%e [(1,1,3)] = (1 + sqrt(17)/2, 4 + x + x^2, D = 17 = d
%e [(1,3,1)] = (3 + sqrt(17)/4, 1  3 x + 2 x^2, D = 17 = d
%e [(3,1,1)] = (1 + Sqrt[65])/4, 8 + x + 2 x^2, D = 65 = d
%e [(1,3,3)] = (1 + sqrt(17)/4, 2  x + 2 x^2, D = 17 = d
%e [(3,1,3)] = (3 + sqrt(65))/4, 7 + 3 x + 2 x^2, D = 65 = d
%e [(3,3,3)] = (5 + sqrt(65))/10, 2  5 x + 5 x^2, D = 65 = d
%e [(3,3,3)] = (1 + sqrt(13))/2, 3 + x + x^2, D = 13 = d
%e The distinct values of D are 5, 13, 17, 65, as in row 3. (Here, d = D for all entries, but higher numbered rows, this d < D for some entried.)
%t z = 8; t[n_] := t[n] = Map[FromContinuedFraction[{1, #}] &, Tuples[{1, 3}, n]]; u[n_] := u[n] = Table[MinimalPolynomial[t[k], x], {k, 1, n}]; d = Discriminant[u[z], x];
%t v[n_] := Table[{p, m} = Transpose[FactorInteger[k]]; Times @@ (p^Mod[m, 2]), {k, d[[n]]}]; w = Table[Union[Table[v[n], {n, 1, z}][[n]]], {n, 1, z}]; TableForm[w] (* A246922 array *)
%t Flatten[w] (* A246922 sequence *)
%Y Cf. A246905, A246921.
%K nonn,tabf,easy
%O 1,1
%A _Clark Kimberling_, Sep 07 2014
