Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:46:09
%S 1,9,12,84,18,720,24,900,156,1080,36,70560,42,1440,1440,11160,54,
%T 98280,60,105840,1920,2160,72,10886400,372,2520,2400,141120,90,
%U 13063680,96,158760,2880,3240,2880,165110400,114,3600,3360,16329600,126,17418240,132,211680
%N Sum of the cumulative sums of all the permutations of divisors of number n.
%C For number n there are A130674(n) = tau(n)! = A000005(n)! permutations of divisors of number n and the same number of their cumulative sums. This sequence is sequence of sums of these sums.
%C Sequences A064945 and A064944 are sequences of minimal and maximal values of cumulative sums of all the permutations of divisors of number n.
%H Antti Karttunen, <a href="/A246916/b246916.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A130674 (n) * ((A064945(n) + A064944(n)) / 2) = (tau(n))! * (((Sum_{i=1..tau(n)} ((tau(n) - i + 1)*d_i) + (Sum_{i=1..tau(n)}( i*d_i))) / 2); where {d_i}, i = 1…tau(n) is increasing sequence of divisors of n.
%F a(n) = sigma(n) * A001710(tau(n) + 1) = A000203(n) * A001710(A000005(n)+1).
%e For n = 4; there are tau(4)! = 6 permutations of divisors of number 4: (1, 2, 4); (1, 4, 2); (2, 1, 4); (2, 4, 1); (4, 1, 2); (4, 2, 1). Sum of their cumulative sums = 11 + 13 + 12 + 15 + 16 + 17 = 84.
%o (Magma) [SumOfDivisors(n)*(Order(AlternatingGroup(NumberOfDivisors(n)+1))): n in [1..100]]
%o (PARI)
%o A001710(n) = if( n<2, n>=0, n!/2);
%o A246916(n) = (sigma(n) * A001710(numdiv(n) + 1)); \\ _Antti Karttunen_, Sep 10 2017
%Y Cf. A000005, A000203, A001710, A064945, A064944, A130674.
%K nonn
%O 1,2
%A _Jaroslav Krizek_, Sep 12 2014