login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that sigma(n+sigma(n)) = 5*sigma(n).
6

%I #18 Sep 08 2022 08:46:09

%S 15456,16920,48576,59520,107160,153360,232596,281916,306720,332280,

%T 332640,358560,360360,373104,383400,514080,548772,556920,788256,

%U 876960,884520,930384,943344,950040,955296,1234464,1357020,1396440,1421280,1534080,1539720,1582866

%N Numbers n such that sigma(n+sigma(n)) = 5*sigma(n).

%e Number 15456 (with sigma(15456) = 48384) is in sequence because sigma(15456+sigma(15456)) = sigma(63840) = 241920 = 5*48384.

%p with(numtheory): A246912:=n->`if`(sigma(n+sigma(n)) = 5*sigma(n),n,NULL): seq(A246912(n), n=1..10^6); # _Wesley Ivan Hurt_, Sep 07 2014

%t Select[Range[16*10^5],DivisorSigma[1,#+DivisorSigma[1,#]] == 5*DivisorSigma[ 1,#]&] (* _Harvey P. Dale_, Mar 13 2016 *)

%o (Magma) [n:n in[1..10^7] | SumOfDivisors(n+SumOfDivisors(n))eq 5*SumOfDivisors(n)]

%o (PARI)

%o for(n=1,10^7,if(sigma(n+sigma(n))==5*sigma(n),print1(n,", "))) \\ _Derek Orr_, Sep 07 2014

%Y Cf. A000203, A246456, A246909, A246910, A246911, A246913, A246914, A274535 (5*sigma(n)).

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Sep 07 2014