Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 17 2023 21:29:49
%S 1,1,1,2,7,21,54,141,407,1231,3691,10990,33144,101674,314679,977289,
%T 3047527,9557503,30133759,95390622,302960929,965282651,3085146472,
%U 9888455045,31774215928,102334358736,330298415136,1068242904256,3461372341327,11235251353747,36527859658661
%N G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * (x*A(x))^(2*k).
%F G.f. A(x) satisfies:
%F (1) A(x) = Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 *(x*A(x))^(2*k)] * (1 - x^2*A(x)^2)^(2*n+1).
%F (2) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
%F (3) A(x) = Sum_{n>=0} x^(3*n) * A(x)^(2*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
%F (4) A(x) = exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * (x*A(x))^(2*k) ).
%F (5) A(x) = exp( Sum_{n>=1} (x^n/n) * ((1 + x*A(x))^(2*n) + (1 - x*A(x))^(2*n))/2 ).
%F (6) A(x) = 1 / sqrt((1 - x*(1 - x*A(x))^2) * (1 - x*(1 + x*A(x))^2)).
%F (7) A(x) = x*A(x) + x^3*A(x)^3 + sqrt(1 + 4*x^4*A(x)^4).
%F (8) A(x) = 1/x * Series_Reversion( x / (x + x^3 + sqrt(1 + 4*x^4)) ).
%e G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 7*x^4 + 21*x^5 + 54*x^6 + 141*x^7 + ...
%e where the g.f. A = A(x) equals the binomial series:
%e A(x) = 1 + x*(1 + x^2*A^2) + x^2*(1 + 2^2*x^2*A^2 + x^4*A^4)
%e + x^3*(1 + 3^2*x^2*A^2 + 3^2*x^4*A^4 + x^6*A^6)
%e + x^4*(1 + 4^2*x^2*A^2 + 6^2*x^4*A^4 + 4^2*x^6*A^6 + x^8*A^8)
%e + x^5*(1 + 5^2*x^2*A^2 + 10^2*x^4*A^4 + 10^2*x^6*A^6 + 5^2*x^8*A^8 + x^10*A^10) + ...
%e Let A = g.f. A(x), then the g.f. satisfies:
%e log(A(x)) = x*(1 + x^2*A^2) + x^2*(1 + 6*x^2*A^2 + x^4*A^4)/2
%e + x^3*(1 + 15*x^2*A^2 + 15*x^4*A^4 + x^6*A^6)/3
%e + x^4*(1 + 28*x^2*A^2 + 70*x^4*A^4 + 28*x^6*A^6 + x^8*A^8)/4
%e + x^5*(1 + 45*x^2*A^2 + 210*x^4*A^4 + 210*x^6*A^6 + 45*x^8*A^8 + x^10*A^10)/5 + ...
%e RELATED SERIES:
%e A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 19*x^4 + 60*x^5 + 168*x^6 + ...
%e A(x)^3 = 1 + 3*x + 6*x^2 + 13*x^3 + 39*x^4 + 126*x^5 + 376*x^6 + ...
%e A(x)^4 = 1 + 4*x + 10*x^2 + 24*x^3 + 71*x^4 + 232*x^5 + 726*x^6 + ...
%e A(x)^6 = 1 + 6*x + 21*x^2 + 62*x^3 + 192*x^4 + 642*x^5 + 2145*x^6 + ...
%e where 1 = (1-x)^2*A(x)^2 - 2*x^3*(1+x)*A(x)^4 + x^6*A(x)^6.
%e Let G(x) = x/Series_Reversion(x*A(x)), then G(x*A(x)) = A(x), where
%e G(x) = x + x^3 + 1 + 2*x^4 - 2*x^8 + 4*x^12 - 10*x^16 + 28*x^20 - 84*x^24 + ...
%e G(x) = x + x^3 + sqrt(1 + 4*x^4).
%o (PARI) /* By definition: */
%o {a(n)=local(A=1); for(i=1,n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*(x*A)^(2*k)) +x*O(x^n))); polcoeff(A, n)}
%o for(n=0, 35, print1(a(n), ", "))
%o (PARI) /* (1) From a binomial series identity: */
%o {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m * sum(k=0, n, binomial(m+k, k)^2*(x*A +x*O(x^n))^(2*k)) * (1-x^2*A^2)^(2*m+1) )); polcoeff(A, n)}
%o for(n=0, 35, print1(a(n), ", "))
%o (PARI) /* (2) From a binomial series identity: */
%o {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*(A +x*O(x^n))^(2*m)*sum(k=0, n, binomial(m+k, k)^2*x^k))); polcoeff(A, n)}
%o for(n=0, 35, print1(a(n), ", "))
%o (PARI) /* (3) From a binomial series identity: */
%o {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(3*m)*A^(2*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) )); polcoeff(A, n)}
%o for(n=0, 35, print1(a(n), ", "))
%o (PARI) /* (4) From exponential series formula: */
%o {a(n)=local(A=1); for(i=1,n, A=exp(sum(m=1, n, ((1+x*A)^(2*m) + (1-x*A)^(2*m))/2 * x^m/m) +x*O(x^n))); polcoeff(A, n)}
%o for(n=0, 35, print1(a(n), ", "))
%o (PARI) /* (6) From functional equation: */
%o {a(n)=local(A=1); for(i=1,n, A = 1 / sqrt((1 - x*(1 - x*A)^2) * (1 - x*(1 + x*A)^2)) +x*O(x^n)); polcoeff(A, n)}
%o for(n=0, 40, print1(a(n), ", "))
%o (PARI) /* (7) From functional equation: */
%o {a(n)=local(A=1); for(i=1,n, A = x*A + x^3*A^3 + sqrt(1 + 4*x^4*A^4 +x*O(x^n)) ); polcoeff(A, n)}
%o for(n=0, 40, print1(a(n), ", "))
%o (PARI) /* (8) From explicit formula: */
%o {a(n)=local(A=1); A= 1/x * serreverse( x / (x + x^3 + sqrt(1 + 4*x^4 +x*O(x^n) )) ); polcoeff(A, n)}
%o for(n=0, 40, print1(a(n), ", "))
%Y Cf. A246840, A181665.
%K nonn
%O 0,4
%A _Paul D. Hanna_, Sep 05 2014