login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composite numbers k such that sigma(k + sigma(k)) = 2*sigma(k).
2

%I #15 Sep 08 2022 08:46:09

%S 329,413,623,869,979,1819,2585,3107,3173,3197,3887,4235,4997,5771,

%T 6149,6187,6443,7409,8399,8759,14429,15323,18515,19019,21181,21413,

%U 23989,26491,29749,30355,31043,32623,34009,34177,39737,47321,47845,51389,53311,56419

%N Composite numbers k such that sigma(k + sigma(k)) = 2*sigma(k).

%C Complement of A005384 (Sophie Germain primes) with respect to A246857.

%e Number 329 (with sigma(329) = 384) is in sequence because sigma(329 + sigma(329)) = sigma(713) = 768 = 2*384.

%t Select[Range[57000], And[CompositeQ[#], DivisorSigma[1, # + DivisorSigma[1, #]] == 2 DivisorSigma[1, #]] &] (* _Michael De Vlieger_, Aug 05 2021 *)

%o (Magma) [n:n in[1..1000] | SumOfDivisors(n+SumOfDivisors(n)) eq 2*SumOfDivisors(n) and not IsPrime(n)]

%o (PARI) lista(nn) = {forcomposite(n=2, nn, if (sigma(n+sigma(n)) == 2*sigma(n), print1(n, ", ")););} \\ _Michel Marcus_, Sep 05 2014

%Y Cf. A074400, A246456.

%Y Cf. A005384, A246858.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Sep 05 2014