login
Decimal expansion of t_0, the lower bound of the conjectured first interval [t_0, t_1] where the real part of zeta(1+i*t) is negative.
1

%I #12 Jan 17 2020 16:09:49

%S 6,8,2,1,1,2,8,9,1,3,3,8,2,3,9,9,4,1,1,5,9,5,5,6,8,2,8,8,0,4,4,3,0,0,

%T 3,4,7,1,1,7,7,7,7,5,6,1,3,7,8,7,5,3,0,9,2,0,4,2,5,9,2,8,4,4,1,0,0,0,

%U 3,5,4,7,4,4,7,5,1,8,7,0,0,0,1,2,1,0,9,2,7,1,3,8,9,3,2,8,6,6,4

%N Decimal expansion of t_0, the lower bound of the conjectured first interval [t_0, t_1] where the real part of zeta(1+i*t) is negative.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 28.

%e 682112.8913382399411595568288044300347117777561378753092...

%t t0 = t /. FindRoot[Re[Zeta[1 + I*t]] == 0, {t, 682112.891 }, WorkingPrecision -> 120]; RealDigits[t0, 10, 99] // First

%Y Cf. A242069, A242070, A246843, A246845.

%K nonn,cons

%O 6,1

%A _Jean-François Alcover_, Sep 05 2014