login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of C, a constant associated with the estimation of the maximum of |zeta(1+i*t)|.
2

%I #16 Jan 17 2020 16:09:30

%S 0,8,9,3,2,6,5,2,2,3,4,3,5,5,1

%N Decimal expansion of C, a constant associated with the estimation of the maximum of |zeta(1+i*t)|.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 28.

%H Tadej Kotnik, <a href="http://dx.doi.org/10.1090/S0025-5718-08-02065-6">Computational estimation of the constant β(1) characterizing the order of ζ(1 + it)</a>, Math. Comp. 77: 1713-1723, 2008.

%F 1 - log(2) + integral_{0..2} log(BesselI(0, t))/t^2 dt + integral_{2..infinity} (log(BesselI(0, t)) - t)/t^2 dt.

%e -0.089326522343551...

%t digits = 15; precision = 200; u0 = 10^8; du = 10^8; tail[u_] := -(1 + Log[2*Pi*u])/(2*u); Clear[f]; f[u_] := f[u] = 1 - Log[2] + NIntegrate[Log[BesselI[0, t]]/t^2, {t, 0, 2} , WorkingPrecision -> precision] + NIntegrate[(Log[BesselI[0, t]] - t)/t^2, {t, 2, u}, WorkingPrecision -> precision, MaxRecursion -> 20 ] + tail[u]; f[u0]; f[u = u0 + du]; While[RealDigits[f[u], 10, digits + 4] != RealDigits[f[u - du], 10, digits + 4], Print["u = ", u, " ", f[u]]; u = u + du]; Join[{0}, RealDigits[f[u], 10, digits] // First]

%Y Cf. A074760, A104539, A104540, A242056.

%K nonn,cons,more

%O 0,2

%A _Jean-François Alcover_, Sep 05 2014

%E Typo in the formula corrected by _Vaclav Kotesovec_, Sep 17 2014